Faculty Digital Archive

Archive@NYU >
Stern School of Business >
IOMS: Information Systems Working Papers >

Please use this identifier to cite or link to this item: http://hdl.handle.net/2451/14171

Authors: Dhar, Vasant
Chou, Dashin
Provost, Foster
Issue Date: Jan-2000
Publisher: Stern School of Business, New York University
Series/Report no.: IS-00-02
Abstract: Prediction in financial domains is notoriously difficult for a number of reasons. First, theories tend to be weak or non-existent, which makes problem formulation open-ended by forcing us to consider a large number of independent variables and thereby increasing the dimensionality of the search space. Second, the weak relationships among variables tend to be nonlinear, and may hold only in limited areas of the search space. Third, in financial practice, where analysts conduct extensive manual analysis of historically well performing indicators, a key is to find the hidden interactions among variables that perform well in combination. Unfortunately, these are exactly the patterns that the greedy search biases incorporated by many standard rule algorithms will miss. In this paper, we describe and evaluate several variations of a new genetic learning algorithm (GLOWER) on a variety of data sets. The design of GLOWER has been motivated by financial prediction problems, but incorporates successful ideas from tree induction and rule learning. We examine the performance of several GLOWER variants on two UCI data sets as well as on a standard financial prediction problem (S&P500 stock returns), using the results to identify and use one of the better variants for further comparisons. We introduce a new (to KDD) financial prediction problem (predicting positive and negative earnings surprises), and experiment withGLOWER, contrasting it with tree- and rule-induction approaches. Our results are encouraging, showing that GLOWER has the ability to uncover effective patterns for difficult problems that have weak structure and significant nonlinearities.
URI: http://hdl.handle.net/2451/14171
Appears in Collections:IOMS: Information Systems Working Papers

Files in This Item:

File Description SizeFormat
IS-00-02.pdf6.85 MBAdobe PDFView/Open

Items in Faculty Digital Archive are protected by copyright, with all rights reserved, unless otherwise indicated.


The contents of the FDA may be subject to copyright, be offered under a Creative Commons license, or be in the public domain.
Please check items for rights statements. For information about NYU’s copyright policy, see http://www.nyu.edu/footer/copyright-and-fair-use.html 
Valid XHTML 1.0 | CSS